On Multiple Classifier Systems for Pattern Recognition
نویسندگان
چکیده
Difficult pattern recognition problems involving large class sets and noisy input can be solved by a multiple classifier system, which allows simultaneous use of arbitrary feature descriptors and classification procedures. Independent decisions by each classifier can be combined by methods of the highest rank, Borda count, and logistic regression, resulting in substantial improvement in overall correctness.
منابع مشابه
Classifier Ensemble Framework: a Diversity Based Approach
Pattern recognition systems are widely used in a host of different fields. Due to some reasons such as lack of knowledge about a method based on which the best classifier is detected for any arbitrary problem, and thanks to significant improvement in accuracy, researchers turn to ensemble methods in almost every task of pattern recognition. Classification as a major task in pattern recognition,...
متن کاملFeature selection algorithms for the generation of multiple classifier systems and their application to handwritten word recognition
The study of multiple classifier systems has become an area of intensive research in pattern recognition recently. Also in handwriting recognition, systems combining several classifiers have been investigated. In this paper new methods for the creation of classifier ensembles based on feature selection algorithms are introduced. Those new methods are evaluated and compared to existing approache...
متن کاملRecognition of Multiple PQ Issues using Modified EMD and Neural Network Classifier
This paper presents a new framework based on modified EMD method for detection of single and multiple PQ issues. In modified EMD, DWT precedes traditional EMD process. This scheme makes EMD better by eliminating the mode mixing problem. This is a two step algorithm; in the first step, input PQ signal is decomposed in low and high frequency components using DWT. In the second stage, the low freq...
متن کاملAn approach to the automatic design of multiple classifier systems
Multiple classifier systems based on the combination of outputs of a set of different classifiers have been proposed in the field of pattern recognition as a method for the development of high performance classification systems. Previous work clearly showed that multiple classifier systems are effective only if the classifiers forming them are accurate and make different errors. Therefore, the ...
متن کاملMethods for Designing Multiple Classifier Systems
In the field of pattern recognition, multiple classifier systems based on the combination of outputs of a set of different classifiers have been proposed as a method for the development of high performance classification systems. In this paper, the problem of design of multiple classifier system is discussed. Six design methods based on the so-called “overproduce and choose” paradigm are descri...
متن کامل